EFFECT OF STREAM SWIRLING ON THE VELOCITY
AND TEMPERATURE DISTRIBUTIONS IN A
ROUND TUBE ‘

M. F. Shnaiderman and A. I. Ershov UDC 536.244

The results of a numerical study of the effect of stream gwirling on the laminar flow struc-
ture and heat exchange in a round tube are presented.

Problems connected with the study of the effect of stream swirling on the intensification of processes
of heat and mass exchange have been attracting the attention of investigators in recent years [1].

The nature of the attenuation of the tangential component of the laminar flow velocity of a liquid along
the radius and the length of a tube was studied in [2] by means of linearization of the complete system of
Navier —Stokes equations. A critical curve for the formation of unstable vortex motion was found experi-
mentally by the author in the form of the dependence of the Reynolds number on the angular velocity of the
liquid at the entrance to the tube.

The numerical methods which presently exist for calculating the flow of a viscous liquid [3] make it
possible to solve the problem in a nonlinear formulation and to determine more accurately the effect of
swirling of the stream on the hydrodynamics and heat exchange.

We shall examine the following problem. A liquid having a constant axial velocity V over the cross
section at the entrance to a tube is twisted like a solid body. The calculation of the velocity profiles in
different cross sections along the length of the tube is required.

Let us write the system of Navier— Stokes equationé for the steady laminar flow of an incompressible
liquid in cylindrical coordinates:
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The boundary conditions are taken as follows:
U =0p=0,=0 at r=R, 2)
v,=V, 0,=0, 0,=0Qr at z2=0, 3)
U, =0,=0, 0,=2V(1—r*RY) at z=21. 4)

The condition (4) means that at a large enough distance from the entrance the flow is assumed to be
hydrodynamically stabilized and the tangential velocity component is absent.
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Let us introduce the stream function and the vortical stress function, determined from the following
equations:

Uzzl—-a—w, dr:—ﬂ'—l"; ® = avr - avl . (5)
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By expressing the velocity components v, and vy in the system (1) through ¢ and «and reducing it to di-
mengionless form we obtain
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where
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Up = vy/V, Re=2RpV/u.
In addition, we introduce the following dimensionless values:
v,=uv/lV, v,=v/V, K=QR/V.

To simplify the notation we will henceforth omit the upper bars over the expressions.

The boundary conditions take the following form:

w_—_] v,=0 at r=1;

=po=0 t = 0;
at r )

=r, 0=0, v,=Kr at z=0;

= 0=8, 0,=0 a1 z=12

The difference method proposed by the authors of [4], which has sufficient simplicity, economy, and
universality, is used for the solution of the system (6).

Each equation of the system (6) can be represented in the form
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where ¢ takes the following values: w/r, ¥, rvgp;
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The boundary condtions for the vortical stress are found by analogy with [4] from the expressions

3 2
0==8br, p=at+btr as r—0, ©)

where n is the distance along the normal to the boundary surface. The finite-difference approximation (8)
is a system of nonlinear algebraic equations which was solved numerically by Seidel's method.
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Fig. 1. Velocity distribution along axis of tube (a) and tan-
gential velocity component in initial section of tube at r = 0.21

(b).

A nonuniform 21 x 15 grid is used in the work; Z = 100.

The value

(N) (N--1)
_ P —9
A= [——(p(N)——} < 0,005, (10)
max

where N is the number of the iteration, served as the convergence criterion.
The axial and radial velocity components were found from the equations
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In order to bring out the effect of the degree of swirling of the stream on the velocity field a com-
parison was made of the data for the Reynolds number Re = 160; the picture is not altered qualitatively for
other Reynolds numbers, although the extrema of the functions are displaced both along the length and along
the radius of the tube.

The same 21 X 15 grid with Re = 160, Z = 50, and K = 4 was used as a control. The maximum dis-
crepancy proved to be at the entrance; at z = R it was 4% for the axial velocity and 1.5% for the tangential
velocity. The error decreases for z > R.

The dependence vy = f(z, K) at the axis of the tube is presented in Fig. 1a. In the absence of stream
swirling (K = 0) we obtain the well-known velocity profile of [6]. At K= 1 the effect of the swirling is
slight. At K = 2 the curve has two extrema, which is explained by the complicated nature of the interaction
of the frictional forces and the centrifugal forces. For K > 3 the streamlines are displaced toward the walls
and the velocity at the axis is decreased at the entrance due to the centrifugal forces. Further alongthe
length of the channel the frictional forces predominate and the velocity begins to increase. At K = 4 and
z=2thevelocity at the axis is decreased to 0, while return currents appear for K > 4. It should be noted
that the minimum value of the velocity for different degrees of swirling at Re = const lies at about the
same distance from the entrance, and the length of the unstabilized section does not vary significantly with
an increase in K.

. The radial velocity component v,. comprises a few percent of V in the entire region except for the
entrance section (0 < z < 0.6), with vy > 0 in the region of the considerable effect of the centrifugal forces
and vy < 0 farther downstream.

For the tangential velocity component the diéplacement of the maximum toward the axis is charac-~
teristic, with v, dying down at once for all K in the vicinity of the wall whereas closer to the axis the tan-
gential velocity along the length of the tube (Fig. 1b) differs markedly with a change in K.

In Fig. 2 we present the dependence on z and K of the total shear stress at the wall

, 4 ov, \? due \2
Tiﬂﬁ—e—]/( or )+( or )
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Fig. 2. Variation of the total shear stress at the wall along the
length of the tube (the total shear stress is denoted by a dashed
line and the axial component of the shear stress by a solid line).

Fig. 3. Ratio of heat fluxes at wall for swirled and axial flows
along length of tube.

(dashed lines) and of the axial component of the shear stress
" 4 dv, )
T, = —Z .,
f Re or
It is seen that the pure contribution of the tangential component of the stress is appi'eciable only at the

entrance {z < 1.5), and at the same time the redistribution of the axial velocity along the radius cohsiderably
increases the shear stress.

It is interesting to study the effect of stream swirling on the heat exchange. Assuming that at the
entrance to the tube the liquid has the temperature T,, the wall temperature is T,, and the Prandtl number
is equal to 1, and neglecting the heating of the liquid due to friction, we obtain the following differential

equation:
__I_zg.. _(?_ T_ai)__i Té.w_ _.?__ ra_T)__?_ ra_T)_—_O, (12)
4 0z or or dz 0z 0z or or
The boundary conditions are:
T=1a r=1, T=0 at z=0;
oT
ar

where T = %—Tl/TZ—T1 and T is the current value of the temperature in dimensional form.

=0 at f"—‘O; T=1 at Z—_—Z, (13)

Equation (12) was solved similarly to (6), with the value calculated earlier for the stream function
being used in this case since in the given formulation the stream function does not depend on the tempera-
ture.

The boundary condition is actually not satisfied at the exit from the tube, although the temperature
field is little sensitive to this boundary condition, as calculations showed.

A comparison of the heat fluxes for different degrees of swirling is shown in Fig. 3. It is seen that
in the region of the considerable effect of centrifugal forces the heat flux into the liquid increases with an
increase in K, while farther downstream the opposite effect occurs.

In the case of the formation of return currents (the curve for K = 5, Fig. 1) the minimum tempera-
ture over the cross section of the tube appears not in the region of the axis but at r = 0.4, with this effect
being observed in the region of 0 < z < 4. For a comparison with the theoretical and experimental results
of [2] a Poiseuille profile was assigned for the axial velocity component at the entrance. The vortex in-
stability observed in [2] was detected by numerical methods at the same values of Re and K, with the first
signs of such an instability being observed in the form of individual velocity pulsations at smaller K for the
same Re. With the appearance of return currents the condition (10) is not satisfied, although with an in-
crease in the number of iterations the process does not diverge but instead A varies periodically. In {2] the
tangential velocity profile was calculated from the equation
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ve(r, 2) =0y (r, O)exp (—B2).

It is seen from Fig. 1b that for z < 4 this equation does not correspond to reality, although (14) does
not hold for z > 4 and the B calculated for our tangential velocity field agree well with the data of [2].

NOTATION
V2= (9%/ar?) + (1/r){d/or) + (6%/8z%);
r,z v ’ are the radial and axial coordinates..
Vi Vigs Vz are the velocity components in the radial, tangential, and axial
directions;

is the radius of the tube;

is the angular velocity of liquid at entrance;
is the length of tube;

is the mean flow rate velocity;

is the density;

is the dynamic viscosity coefficient.
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